An improved vinylalumination procedure replacing HMPA with NMO for the hydroalumination of α -acetylenic esters and ketones

P. Veeraraghavan Ramachandran,* M. Venkat Ram Reddy and Michael T. Rudd

H. C. Brown and R. B. Wetherill Laboratories of Chemistry, Purdue University, West Lafayette, Indiana 47907-1393, USA. E-mail: chandran@purdue.edu

Received (in Corvallis, OR, USA) 15th July 1999, Accepted 20th August 1999

Replacing carcinogenic HMPA with NMO, a higher yielding, enviornmentally benign procedure for the vinylalumination of carbonyl compounds with [α -(ethoxycarbonyl)vinyl]diisobutylaluminium and its β -methyl or -phenyl analogs, as well as [α -(acetyl)vinyl]diisobutylaluminium has been developed.

Vinylalumination,¹ a carbon–carbon bond forming reaction of vinylaluminium derivatives with electrophiles, provides Morita–Baylis–Hillman² type products without the reaction's limitations. For example, (i) the electrophiles are not limited to reactive carbonyls and imines, (ii) the reaction times are considerably shorter, and (iii) β -substitution of the vinyl moiety is readily accommodated.

Although known for over a decade, the lack of extensive utilization of this potentially useful reaction may be due to the presence of a carcinogenic material, HMPA,³ as the complexing agent with DIBAL-H for the hydroalumination of propiolates. Several possible replacements for HMPA, such as 1,3-dimethyl-3,4,5,6-tetrahydro-2(1H)-pyrimidone (DMPU).4a1,3-dimethylimidazolidin-2-one (DMEU or DMI),4b and quinuclidine *N*-oxide (ONO)^{4c} have been reported in the literature. Since DMPU and DMI might undergo reduction with DIBAL-H and QNO is not economical, we studied a series of other amine oxides as complexing agents. Although mixtures of DIBAL-H and aromatic amine oxides, such as pyridine and picoline Noxides, did not provide the required hydroalumination product, aliphatic trialkylamine oxides, such as trimethylamine N-oxide and NMO, were found to be suitable complexing agents for the hydroalumination of propargylic esters and ketones. Our study with the relatively inexpensive NMO revealed it to be an excellent HMPA alternative for vinylaluminations, improving the reaction conditions and providing superior yields of the products. We also noticed that Lewis acid catalysis^{1d} and low reaction temperatures^{1d} are not essential for reactions with the β -methyl and -phenyl substituted reagents.

The addition of DIBAL-H to a suspension of NMO in THF provided a clear solution. The reaction of ethyl propiolate **1a** in THF with 1.5 equiv. DIBAL-H–NMO in hexanes at 0 °C provided the [α -(ethoxycarbonyl)vinyl]diisobutylaluminium **2a**. Benzaldehyde **4** (1.2 equiv.) was added to this reagent at 0 °C and warmed to room temperature. The reaction was complete within 4 h. Hydrolysis using 1.0 *M* HCl, followed by chromatography, provided 96% yield of the product **5a** (Scheme 1). Earlier procedures employing HMPA utilized 2 equiv. of the aldehyde.¹ We observed that the hydrolysis was much more facile when compared to the reactions using

HMPA.¹ The reaction provided high yields of the products with all of the aldehydes, *viz.* butyraldehyde **6**, isobutyraldehyde **8**, pivalaldehyde **10** and fluoral **12**.

The corresponding β -substituted vinylaluminium reagent, [α -(ethoxycarbonyl)- β -methylvinyl]diisobutylaluminium **2b**, reacted with **4** smoothly to provide ethyl (*Z*)-1-hydroxy-1-phenylbut-2-enoate **5b** in 82% yield (Scheme 1). The β phenylvinyldiisobutylaluminium reagent **2c** yielded 80% of the corresponding *Z* product **5c**. The stereochemistry of the alkenes (¹H NMR) is exclusively *Z*.¹*e* In contrast to the earlier reported procedure involving HMPA,¹*d* neither of these reactions require Lewis acid catalysis or low temperatures (-78 °C).

The reaction of acetophenone 14 with 2a was sluggish. We worked up the reaction after 2 d and obtained only 12% yield of the product 15a along with 25% of recovered 14 and a mixture of unidentified products. Addition of 10% of a Lewis acid, such as BF_3 ·Et₂O, provided a small amount of the product with most of the ketone recovered. Upon the addition of 1 equiv. of BF_3 ·Et₂O, the reaction was complete within 4 h, and work up provided a 74% yield of 15a (Table 1, entry 12). Butan-2-one 16 reacted similarly, in the presence of 1 equiv. of BF_3 ·Et₂O, providing the product in 75% yield (Table 1, entry 15). Reagents 2b and 2c gave similar results with these ketones.

An activated ketone, such as 2,2,2-trifluoroacetophenone **18**, reacted similar to an aldehyde, without Lewis acid, and the product **19a** was obtained in 95% yield (Table 1, entry 18). We then examined the reaction of **2a** with ethyl pyruvate **20**, and obtained the corresponding product alcohol in 95% yield (Table 1, entry 19).

The procedure was then extended to α -acetylvinyldiisobutylaluminium **3a**, prepared *via* the hydroalumination of but-3-yn-2-one with DIBAL-H–NMO complex (Scheme 2). A 23–31% yield of products from benzaldehyde and butyraldehyde for a reaction of **3a** prepared with DIBAL-H–HMPA was reported by Tsuda.^{1a} Replacement of HMPA with NMO provided a 36% yield of **22a**. However, utilization of 2 equiv. of the reagent improved the yield to 95% (Scheme 2). We used these modified conditions for the reaction of the same series of aldehydes (**4**, **6**, **8**, **10**, **12**) with **3a** and the products were obtained in 72–95% yield. However, ketones did not react with **3a**. All of the results are summarized in Table 1.

In conclusion, we have described a significantly improved procedure for the vinylalumination of a variety of carbonyl compounds with $[\alpha$ -(ethoxycarbonyl)vinyl]- and (α -acetylvinyl)diisobutylaluminium. Replacement of carcinogenic HMPA with readily available NMO in the hydroalumination step makes this procedure environmentally benign. The work up is simpler and the yields of the products are considerably higher in most cases. We have also shown that Lewis acid catalysis and low reaction temperatures are not essential for reactions with

Chem. Commun., 1999, 1979–1980 1979

EntryNo. R^1 XNo. R^2 R^3 No.Yield ^b (%)12aHOEt4PhH5a96 (83) ^a 22bMeOEt4PhH5b82 (58) ^d 32cPhOEt4PhH5c80 (61) ^d 42aHOEt6PrH7a9052cPhOEt6PrH7b9062cPhOEt6PrH7c7572aHOEt8Pr'H9a8882aHOEt10ButH11a7292aHOEt12CF ₃ H13a80102bMeOEt12CF ₃ H13b70112cPhOEt12CF ₃ H13c75122aHOEt14 ^a PhMe15a74132bMeOEt14 ^a PhMe15c70152aHOEt16 ^a EtMe17a75162bMeOEt16 ^a EtMe17b80172cPhOEt16 ^a EtMe17c75162bMeOEt16 ^a EtMe17c75162b </th <th></th> <th rowspan="2">Entry</th> <th colspan="3">Reagent</th> <th colspan="3">R²COR³</th> <th colspan="2">Product</th> <th></th>		Entry	Reagent			R ² COR ³			Product		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			No.	\mathbb{R}^1	Х	No.	R ²	R ³	No.	Yield ^b (%)	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		1	2a	Н	OEt	4	Ph	Н	5a	96 (83) ^a	
32cPhOEt4PhH5c80 $(61)^{d}$ 42aHOEt6PrH7a9052bMeOEt6PrH7b9062cPhOEt6PrH7c7572aHOEt8PriH9a8882aHOEt10ButH11a7292aHOEt12CF3H13b70102bMeOEt12CF3H13b70112cPhOEt14e'PhMe15a74132bMeOEt14e'PhMe15b72142cPhOEt16e'EtMe17a75162bMeOEt16e'EtMe17b80172cPhOEt16e'EtMe17c70182aHOEt16e'EtMe17c70182aHOEt18PhCF319a95 (65)s203aHMe4h'PhH22a95213aHMe6h'PrH25a80233aHMe8h'PriH25a80243aHMe10h' <td></td> <td>2</td> <td>2b</td> <td>Me</td> <td>OEt</td> <td>4</td> <td>Ph</td> <td>Н</td> <td>5b</td> <td>$82(58)^d$</td> <td></td>		2	2b	Me	OEt	4	Ph	Н	5b	$82(58)^d$	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		3	2c	Ph	OEt	4	Ph	Н	5c	$80(61)^d$	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		4	2a	Н	OEt	6	Pr	Н	7a	90	
62cPhOEt6PrH7c7572aHOEt8PriH9a8882aHOEt10ButH11a7292aHOEt12CF3H13a80102bMeOEt12CF3H13b70112cPhOEt12CF3H13c75122aHOEt14ePhMe15a74132bMeOEt14ePhMe15b72142cPhOEt16eEtMe17a75162bMeOEt16eEtMe17b80172cPhOEt16eEtMe17b80182aHOEt16eEtMe17c70182aHOEt20MeCO2Et21a95 (65) ^g 203aHMe4 ^h PhH22a95213aHMe6 ^h PrH24a80233aHMe10 ^h ButH25a80243aHMe12 ^h CF3H26a84		5	2b	Me	OEt	6	Pr	Н	7b	90	
72aHOEt8PriH9a8882aHOEt10ButH11a7292aHOEt12CF3H13a80102bMeOEt12CF3H13b70112cPhOEt12CF3H13c75122aHOEt14ePhMe15b72132bMeOEt14ePhMe15c70142cPhOEt16eEtMe17a75162bMeOEt16eEtMe17b80172cPhOEt16eEtMe17c70182aHOEt20MeCO2Et21a95 (70)'192aHOEt20MeCO2Et21a95 (65)s'203aHMe4hPhH22a95213aHMe8hPriH23a72223aHMe10hButH25a80233aHMe10hButH25a84		6	2c	Ph	OEt	6	Pr	Н	7c	75	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		7	2a	Н	OEt	8	Pr ⁱ	Н	9a	88	
92aHOEt12 CF_3 H13a80102bMeOEt12 CF_3 H13b70112cPhOEt12 CF_3 H13c75122aHOEt14ePhMe15a74132bMeOEt14ePhMe15b72142cPhOEt14ePhMe15c70152aHOEt16eEtMe17a75162bMeOEt16eEtMe17b80172cPhOEt16eEtMe17c70182aHOEt20Me CO_2Et 21a95 (70)f192aHOEt20Me CO_2Et 21a95 (65)s203aHMe4hPhH23a72223aHMe10hButH24a80233aHMe10hButH25a80243aHMe10hButH26a84		8	2a	Н	OEt	10	But	Н	11a	72	
102bMeOEt12 CF_3 H13b70112cPhOEt12 CF_3 H13c75122aHOEt14ePhMe15a74132bMeOEt14ePhMe15b72142cPhOEt14ePhMe15c70152aHOEt16eEtMe17a75162bMeOEt16eEtMe17b80172cPhOEt16eEtMe17c70182aHOEt18PhCF_319a95 (70)f192aHOEt20MeCO ₂ Et21a95 (65)s203aHMe4hPhH22a95213aHMe10hButH25a80233aHMe10hButH25a80243aHMe10hButH25a84		9	2a	Н	OEt	12	CF ₃	Н	13a	80	
112cPhOEt12 CF_3 H13c75122aHOEt 14^e PhMe $15a$ 74132bMeOEt 14^e PhMe $15b$ 72142cPhOEt 14^e PhMe $15c$ 70152aHOEt 16^e EtMe $17a$ 75162bMeOEt 16^e EtMe $17b$ 80172cPhOEt 16^e EtMe $17c$ 70182aHOEt 16^e EtMe $17c$ 70182aHOEt 20 Me CO_2Et $21a$ $95(65)^g$ 203aHMe 4^h PhH $23a$ 72 213aHMe 10^h ButH $24a$ 80 233aHMe 10^h ButH $25a$ 80 243aHMe 12^h CF_3 H $26a$ 84		10	2b	Me	OEt	12	CF ₃	Н	13b	70	
122aHOEt 14^e PhMe $15a$ 74 132bMeOEt 14^e PhMe $15b$ 72 142cPhOEt 14^e PhMe $15c$ 70 152aHOEt 16^e EtMe $17a$ 75 162bMeOEt 16^e EtMe $17b$ 80 172cPhOEt 16^e EtMe $17c$ 70 182aHOEt 18^e Ph CF_3 $19a$ 95 ($70)^f$ 192aHOEt20Me CO_2Et $21a$ 95 ($65)^g$ 203aHMe 4^h PhH $22a$ 95 213aHMe 8^h Pr^i H $24a$ 80 233aHMe 10^h Bu^t H $25a$ 80 243aHMe 12^h CF_3 H $26a$ 84		11	2c	Ph	OEt	12	CF ₃	Н	13c	75	
132bMeOEt 14^e PhMe $15b$ 72142cPhOEt 14^e PhMe $15c$ 70152aHOEt 16^e EtMe $17a$ 75162bMeOEt 16^e EtMe $17b$ 80172cPhOEt 16^e EtMe $17c$ 70182aHOEt 18^e PhCF ₃ $19a$ 95 (70)^f192aHOEt20Me CO_2Et $21a$ 95 ($65)^g$ 203aHMe 4^h PhH $22a$ 95 213aHMe 8^h PriH $24a$ 80 233aHMe 10^h Bu^t H $25a$ 80 243aHMe 12^h CF_3 H $26a$ 84		12	2a	Н	OEt	14^e	Ph	Me	15a	74	
142cPhOEt14ePhMe15c70152aHOEt16eEtMe17a75162bMeOEt16eEtMe17b80172cPhOEt16eEtMe17c70182aHOEt18PhCF319a95 (70)f192aHOEt20MeCO2Et21a95 (65)g203aHMe4hPhH22a95213aHMe8hPriH24a80233aHMe10hButH25a80243aHMe12hCF3H26a84		13	2b	Me	OEt	14^e	Ph	Me	15b	72	
152aHOEt16eEtMe17a75162bMeOEt16eEtMe17b80172cPhOEt16eEtMe17c70182aHOEt18PhCF319a95 (70) ^f 192aHOEt20MeCO2Et21a95 (65) ^g 203aHMe4hPhH22a95213aHMe8hPriH24a80233aHMe10hButH25a80243aHMe12hCF3H26a84		14	2c	Ph	OEt	14^{e}	Ph	Me	15c	70	
162bMeOEt16eEtMe17b80172cPhOEt16eEtMe17c70182aHOEt18PhCF319a95 (70)f192aHOEt20MeCO2Et21a95 (65)s203aHMe4hPhH22a95213aHMe8hPriH24a80233aHMe10hButH25a80243aHMe12hCF3H26a84		15	2a	Н	OEt	16 ^e	Et	Me	17a	75	
172cPhOEt16eEtMe17c70182aHOEt18PhCF319a95 (70)f192aHOEt20Me CO_2Et 21a95 (65)s203aHMe4hPhH22a95213aHMe6hPrH23a72223aHMe10hButH24a80233aHMe10hButH25a80243aHMe12hCF3H26a84		16	2b	Me	OEt	16 ^e	Et	Me	17b	80	
182aHOEt18Ph CF_3 19a95 (70)f192aHOEt20Me CO_2Et 21a95 (65)g203aHMe 4^{f_1} PhH22a95213aHMe 6^{f_1} PrH23a72223aHMe 8^{f_1} PriH24a80233aHMe10^{f_1}ButH25a80243aHMe12^{f_2} CF_3 H26a84		17	2c	Ph	OEt	16 ^e	Et	Me	17c	70	
192aHOEt20Me CO_2Et 21a95 (65)g203aHMe 4^h PhH22a95213aHMe 6^h PrH23a72223aHMe 8^h PriH24a80233aHMe10^hButH25a80243aHMe12^h CF_3 H26a84		18	2a	Н	OEt	18	Ph	CF ₃	19a	95 (70)f	
203aHMe 4^h PhH22a95213aHMe 6^h PrH23a72223aHMe 8^h PriH24a80233aHMe 10^h ButH25a80243aHMe 12^h CF_3 H26a84		19	2a	Н	OEt	20	Me	CO ₂ Et	21a	95 (65) ^g	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		20	3a	Н	Me	4^{h}	Ph	Н	22a	95	
22 $3a$ HMe 8^h Pr^i H $24a$ 80 23 $3a$ HMe 10^h ButH $25a$ 80 24 $3a$ HMe 12^h CF_3 H $26a$ 84		21	3a	Н	Me	6 ^h	Pr	Н	23a	72	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		22	3a	Н	Me	8 ^h	Pr ⁱ	Н	24a	80	
24 3a H Me 12 ^h CF ₃ H 26a 84		23	3a	Н	Me	10 ^h	But	Н	25a	80	
		24	3a	Н	Me	12^h	CF ₃	Н	26a	84	

^{*a*} The reactions were carried out in THF at room temperature with 1.2 equiv. of the carbonylcompound. ^{*b*} All of the yields are of isolated, purified products. Values in parenthesis are from a reaction with the reagent made using DIBAL-H–HMPA. ^{*c*} Ref. 1(*a*). ^{*d*} Ref. 1(*d*). ^{*e*} 1 equiv. of BF₃•Et₂O was added. ^{*f*} Ref. 1(*e*). ^{*g*} Ref. 1(*f*). ^{*h*} 2 equiv. of reagent was essential for complete reaction.

the β -methyl and -phenyl substituted reagents. Further explorations and a study of the mechansim of this reaction are in progress.

Financial assistance from the Purdue Borane Research Fund is gratefully acknowledged.

Helv. Chim. Acta, 1994, **77**, 1480; (*d*) G. Li, H. X. Wei and S. Willis, *Tetrahedron Lett.*, 1998, **39**, 4607; (*e*) P. V. Ramachandran, M. V. R. Reddy, M. T. Rudd and J. R. de Alaniz, *Tetrahedron Lett.*, 1998, **39**, 8791; (*f*) P. V. Ramachandran, M. V. R. Reddy and M. T. Rudd, *Tetrahedron Lett.*, 1999, **40**, 627.

- 2 For the most recent review of the Morita–Baylis–Hillman reaction, see: E. Ciganek, *Org. React.*, 1997, **51**, 201.
- 3 J. F. Schmutz, Chem. Eng. News, 1978, 56 (3), 39; H. Spencer, Chem. Ind., 1979, 728.
- 4 (a) T. Mukhopadhyay and D. Seebach, *Helv. Chim. Acta*, 1982, 65, 385;
 (b) E. Juaristi, P. Murer and D. Seebach, *Synthesis*, 1993, 1243; (c) I. A. O'Neil, J. Y. Q. Lai and D. Wynn, *Chem. Commun.*, 1999, 56.

Communication 9/05836B

Notes and references

 (a) T. Tsuda, T. Yoshida and T. Saegusa, J. Org. Chem., 1988, 53, 1037;
 (b) Y. Génisson, C. Massardier, I. Gautier-Luneau and A. E. Greene, J. Chem. Soc., Perkin Trans. 1, 1996, 2869; (c) L. H. Zu and E. P. Kundig,